
Cryptographic Primitives in Blockchain

Dr. Keyur Parmar

Indian Institute of Information Technology, Vadodara

Outline

1. Introduction

2. Cryptographic Hash Functions

3. Public-key Cryptography

4. Digital Signature

5. References

Introduction

What is a fingerprint? Is it useful? How?

Which attributes of a fingerprint make it useful?

• Uniqueness (i.e., unique to each person)

• Persistence (i.e., does not change over time)

• Size (i.e., very small as compared to the person)

Which attributes of a fingerprint make it useful?

• Uniqueness (i.e., unique to each person)

• Persistence (i.e., does not change over time)

• Size (i.e., very small as compared to the person)

Which attributes of a fingerprint make it useful?

• Uniqueness (i.e., unique to each person)

• Persistence (i.e., does not change over time)

• Size (i.e., very small as compared to the person)

Which attributes of a fingerprint make it useful?

• Uniqueness (i.e., unique to each person)

• Persistence (i.e., does not change over time)

• Size (i.e., very small as compared to the person)

Goal: To generate fingerprints for digital data, e.g., a

fingerprint for a text message or a video.

Goal: To generate fingerprints for digital data, e.g., a

fingerprint for a text message or a video.

Is it difficult to generate a fingerprint for digital data?

Cryptographic Hash Functions

What is a cryptographic hash function?

Cryptographic Hash Function

• Input:

• A variable-length data block M

• Output:

• A fixed-size hash code h = H(M)

Cryptographic Hash Function

• Input:

• A variable-length data block M

• Output:

• A fixed-size hash code h = H(M)

Cryptographic Hash Function

• Input:

• A variable-length data block M

• Output:

• A fixed-size hash code h = H(M)

Cryptographic Hash Function

• Input:

• A variable-length data block M

• Output:

• A fixed-size hash code h = H(M)

Cryptographic Hash Function - SHA256 - Example-1

• Input (Text):

• Keyur

• Output (Hexadecimal):

• ABDCF0E8 41704B32 BFA2B901 F44CD8B4 A99DD384

D63A044F 552BF2AC EA0C46D3

• Output (Binary):

• 10101011 11011100 11110000 11101000 01000001

01110000 01001011 00110010 10111111 10100010

10111001 00000001 11110100 01001100 11011000

10110100 10101001 10011101 11010011 10000100

11010110 00111010 00000100 01001111 01010101

00101011 11110010 10101100 11101010 00001100

01000110 11010011

Cryptographic Hash Function - SHA256 - Example-1

• Input (Text):

• Keyur

• Output (Hexadecimal):

• ABDCF0E8 41704B32 BFA2B901 F44CD8B4 A99DD384

D63A044F 552BF2AC EA0C46D3

• Output (Binary):

• 10101011 11011100 11110000 11101000 01000001

01110000 01001011 00110010 10111111 10100010

10111001 00000001 11110100 01001100 11011000

10110100 10101001 10011101 11010011 10000100

11010110 00111010 00000100 01001111 01010101

00101011 11110010 10101100 11101010 00001100

01000110 11010011

Cryptographic Hash Function - SHA256 - Example-1

• Input (Text):

• Keyur

• Output (Hexadecimal):

• ABDCF0E8 41704B32 BFA2B901 F44CD8B4 A99DD384

D63A044F 552BF2AC EA0C46D3

• Output (Binary):

• 10101011 11011100 11110000 11101000 01000001

01110000 01001011 00110010 10111111 10100010

10111001 00000001 11110100 01001100 11011000

10110100 10101001 10011101 11010011 10000100

11010110 00111010 00000100 01001111 01010101

00101011 11110010 10101100 11101010 00001100

01000110 11010011

Cryptographic Hash Function - SHA256 - Example-1

• Input (Text):

• Keyur

• Output (Hexadecimal):

• ABDCF0E8 41704B32 BFA2B901 F44CD8B4 A99DD384

D63A044F 552BF2AC EA0C46D3

• Output (Binary):

• 10101011 11011100 11110000 11101000 01000001

01110000 01001011 00110010 10111111 10100010

10111001 00000001 11110100 01001100 11011000

10110100 10101001 10011101 11010011 10000100

11010110 00111010 00000100 01001111 01010101

00101011 11110010 10101100 11101010 00001100

01000110 11010011

Cryptographic Hash Function - SHA256 - Example-1

• Input (Text):

• Keyur

• Output (Hexadecimal):

• ABDCF0E8 41704B32 BFA2B901 F44CD8B4 A99DD384

D63A044F 552BF2AC EA0C46D3

• Output (Binary):

• 10101011 11011100 11110000 11101000 01000001

01110000 01001011 00110010 10111111 10100010

10111001 00000001 11110100 01001100 11011000

10110100 10101001 10011101 11010011 10000100

11010110 00111010 00000100 01001111 01010101

00101011 11110010 10101100 11101010 00001100

01000110 11010011

Cryptographic Hash Function - SHA256 - Example-1

• Input (Text):

• Keyur

• Output (Hexadecimal):

• ABDCF0E8 41704B32 BFA2B901 F44CD8B4 A99DD384

D63A044F 552BF2AC EA0C46D3

• Output (Binary):

• 10101011 11011100 11110000 11101000 01000001

01110000 01001011 00110010 10111111 10100010

10111001 00000001 11110100 01001100 11011000

10110100 10101001 10011101 11010011 10000100

11010110 00111010 00000100 01001111 01010101

00101011 11110010 10101100 11101010 00001100

01000110 11010011

Cryptographic Hash Function - SHA256 - Example-2

• Input:

• Ubuntu DVD (1.9 GB): ubuntu-18.04.2-desktop-

amd64.iso

• Output (Hexadecimal):

• 22580B9F 3B186CC6 6818E60F 44C46F79 5D708A1A

D86B9225 C458413B 638459C4

• Output (Binary):

• 00100010 01011000 00001011 10011111 00111011

00011000 01101100 11000110 01101000 00011000

11100110 00001111 01000100 11000100 01101111

01111001 01011101 01110000 10001010 00011010

11011000 01101011 10010010 00100101 11000100

01011000 01000001 00111011 01100011 10000100

01011001 11000100

Cryptographic Hash Function - SHA256 - Example-2

• Input:

• Ubuntu DVD (1.9 GB): ubuntu-18.04.2-desktop-

amd64.iso

• Output (Hexadecimal):

• 22580B9F 3B186CC6 6818E60F 44C46F79 5D708A1A

D86B9225 C458413B 638459C4

• Output (Binary):

• 00100010 01011000 00001011 10011111 00111011

00011000 01101100 11000110 01101000 00011000

11100110 00001111 01000100 11000100 01101111

01111001 01011101 01110000 10001010 00011010

11011000 01101011 10010010 00100101 11000100

01011000 01000001 00111011 01100011 10000100

01011001 11000100

Cryptographic Hash Function - SHA256 - Example-2

• Input:

• Ubuntu DVD (1.9 GB): ubuntu-18.04.2-desktop-

amd64.iso

• Output (Hexadecimal):

• 22580B9F 3B186CC6 6818E60F 44C46F79 5D708A1A

D86B9225 C458413B 638459C4

• Output (Binary):

• 00100010 01011000 00001011 10011111 00111011

00011000 01101100 11000110 01101000 00011000

11100110 00001111 01000100 11000100 01101111

01111001 01011101 01110000 10001010 00011010

11011000 01101011 10010010 00100101 11000100

01011000 01000001 00111011 01100011 10000100

01011001 11000100

Cryptographic Hash Function - SHA256 - Example-2

• Input:

• Ubuntu DVD (1.9 GB): ubuntu-18.04.2-desktop-

amd64.iso

• Output (Hexadecimal):

• 22580B9F 3B186CC6 6818E60F 44C46F79 5D708A1A

D86B9225 C458413B 638459C4

• Output (Binary):

• 00100010 01011000 00001011 10011111 00111011

00011000 01101100 11000110 01101000 00011000

11100110 00001111 01000100 11000100 01101111

01111001 01011101 01110000 10001010 00011010

11011000 01101011 10010010 00100101 11000100

01011000 01000001 00111011 01100011 10000100

01011001 11000100

Cryptographic Hash Function - SHA256 - Example-2

• Input:

• Ubuntu DVD (1.9 GB): ubuntu-18.04.2-desktop-

amd64.iso

• Output (Hexadecimal):

• 22580B9F 3B186CC6 6818E60F 44C46F79 5D708A1A

D86B9225 C458413B 638459C4

• Output (Binary):

• 00100010 01011000 00001011 10011111 00111011

00011000 01101100 11000110 01101000 00011000

11100110 00001111 01000100 11000100 01101111

01111001 01011101 01110000 10001010 00011010

11011000 01101011 10010010 00100101 11000100

01011000 01000001 00111011 01100011 10000100

01011001 11000100

Cryptographic Hash Function - SHA256 - Example-2

• Input:

• Ubuntu DVD (1.9 GB): ubuntu-18.04.2-desktop-

amd64.iso

• Output (Hexadecimal):

• 22580B9F 3B186CC6 6818E60F 44C46F79 5D708A1A

D86B9225 C458413B 638459C4

• Output (Binary):

• 00100010 01011000 00001011 10011111 00111011

00011000 01101100 11000110 01101000 00011000

11100110 00001111 01000100 11000100 01101111

01111001 01011101 01110000 10001010 00011010

11011000 01101011 10010010 00100101 11000100

01011000 01000001 00111011 01100011 10000100

01011001 11000100

Applications of Cryptographic Hash

Functions

Applications of Cryptographic Hash Functions

• Message authentication

• Digital signature

• One-way password file (e.g., /etc/shadow)

• Pseudo-random number generator (PRNG)

• Blockchain

Applications of Cryptographic Hash Functions

• Message authentication

• Digital signature

• One-way password file (e.g., /etc/shadow)

• Pseudo-random number generator (PRNG)

• Blockchain

Applications of Cryptographic Hash Functions

• Message authentication

• Digital signature

• One-way password file (e.g., /etc/shadow)

• Pseudo-random number generator (PRNG)

• Blockchain

Applications of Cryptographic Hash Functions

• Message authentication

• Digital signature

• One-way password file (e.g., /etc/shadow)

• Pseudo-random number generator (PRNG)

• Blockchain

Applications of Cryptographic Hash Functions

• Message authentication

• Digital signature

• One-way password file (e.g., /etc/shadow)

• Pseudo-random number generator (PRNG)

• Blockchain

How to design a cryptographically secure hash function?

Requirements for a Cryptographic Hash

Functions

Requirements for a Cryptographic Hash Functions

1. Variable input size

2. Fixed output size

3. Efficiency

4. One-way property (Preimage resistant)

5. Second preimage resistant (Weak collision resistant)

6. Collision resistant (Strong collision resistant)

Requirements for a Cryptographic Hash Functions

1. Variable input size

2. Fixed output size

3. Efficiency

4. One-way property (Preimage resistant)

5. Second preimage resistant (Weak collision resistant)

6. Collision resistant (Strong collision resistant)

Requirements for a Cryptographic Hash Functions

1. Variable input size

2. Fixed output size

3. Efficiency

4. One-way property (Preimage resistant)

5. Second preimage resistant (Weak collision resistant)

6. Collision resistant (Strong collision resistant)

Requirements for a Cryptographic Hash Functions

1. Variable input size

2. Fixed output size

3. Efficiency

4. One-way property (Preimage resistant)

5. Second preimage resistant (Weak collision resistant)

6. Collision resistant (Strong collision resistant)

Requirements for a Cryptographic Hash Functions

1. Variable input size

2. Fixed output size

3. Efficiency

4. One-way property (Preimage resistant)

5. Second preimage resistant (Weak collision resistant)

6. Collision resistant (Strong collision resistant)

Requirements for a Cryptographic Hash Functions

1. Variable input size

2. Fixed output size

3. Efficiency

4. One-way property (Preimage resistant)

5. Second preimage resistant (Weak collision resistant)

6. Collision resistant (Strong collision resistant)

Requirements for a Cryptographic Hash Functions

• Preimage - For a hash code h = H(m), m is the preimage

of h.

• As there is a many-to-one mapping, for any given hash

code h, there will be multiple preimages.

Requirements for a Cryptographic Hash Functions

• Preimage - For a hash code h = H(m), m is the preimage

of h.

• As there is a many-to-one mapping, for any given hash

code h, there will be multiple preimages.

Requirements for a Cryptographic Hash Functions

• Preimage - For a hash code h = H(m), m is the preimage

of h.

• As there is a many-to-one mapping, for any given hash

code h, there will be multiple preimages.

Requirements for a Cryptographic Hash Functions

• Let’s assume that the length of the hash code is n bits,

and the hash function H takes as input messages of length

b bits with b > n.

• The total number of possible hash codes is 2n, the total

number of possible messages is 2b.

• On average, each hash code corresponds to 2b−n preimages.

• If the input is arbitrarily large, then the number of preim-

ages per hash code is arbitrarily large. Hence, there will be

collisions.

• Is it possible to design a collision resistant hash function?

Requirements for a Cryptographic Hash Functions

• Let’s assume that the length of the hash code is n bits,

and the hash function H takes as input messages of length

b bits with b > n.

• The total number of possible hash codes is 2n, the total

number of possible messages is 2b.

• On average, each hash code corresponds to 2b−n preimages.

• If the input is arbitrarily large, then the number of preim-

ages per hash code is arbitrarily large. Hence, there will be

collisions.

• Is it possible to design a collision resistant hash function?

Requirements for a Cryptographic Hash Functions

• Let’s assume that the length of the hash code is n bits,

and the hash function H takes as input messages of length

b bits with b > n.

• The total number of possible hash codes is 2n, the total

number of possible messages is 2b.

• On average, each hash code corresponds to 2b−n preimages.

• If the input is arbitrarily large, then the number of preim-

ages per hash code is arbitrarily large. Hence, there will be

collisions.

• Is it possible to design a collision resistant hash function?

Requirements for a Cryptographic Hash Functions

• Let’s assume that the length of the hash code is n bits,

and the hash function H takes as input messages of length

b bits with b > n.

• The total number of possible hash codes is 2n, the total

number of possible messages is 2b.

• On average, each hash code corresponds to 2b−n preimages.

• If the input is arbitrarily large, then the number of preim-

ages per hash code is arbitrarily large. Hence, there will be

collisions.

• Is it possible to design a collision resistant hash function?

Requirements for a Cryptographic Hash Functions

• Let’s assume that the length of the hash code is n bits,

and the hash function H takes as input messages of length

b bits with b > n.

• The total number of possible hash codes is 2n, the total

number of possible messages is 2b.

• On average, each hash code corresponds to 2b−n preimages.

• If the input is arbitrarily large, then the number of preim-

ages per hash code is arbitrarily large. Hence, there will be

collisions.

• Is it possible to design a collision resistant hash function?

One-way Property (Preimage Resistant)

For any given hash code h, it is computationally infeasible

to find the input message m such that H(m) = h.

Second Preimage Resistant (Weak Collision Resistant)

For any given message m1, it is computationally infeasible

to find another message m2 such that m1 6= m2 and

H(m1) = H(m2).

Collision Resistant (Strong Collision Resistant)

It is computationally infeasible to find a pair of messages

(m1,m2) such that m1 6= m2 and H(m1) = H(m2).

Security Attacks

• Two categories of attacks on hash functions.

• Brute-force attacks - depend only on the bit length. (e.g.,

bit length of the hash code)

• Cryptanalysis - depends on design flaw(s) of a particular

hash function.

• Given the following entry of the “/etc/shadow” file (of

Ubuntu 16.04), find the password of the user, “Alice”

which contains [A-Za-z1-9] (Uppercase and/or lowercase

letters and/or numbers).

Alice:6YIjqPaC8$ckYvhWkRkymmv/twBcANwa/L

WNjLsAdCHRToK3G9GIImPUWERnmFW2bUoOmLH

zUJ2tGr433QaOnHLdjDjc4Bs/:17648:0:99999:7:::

• Which property of the hash function you have to attack to

find the password of Alice? Why?

Preimage Attack - A Brute-force Approach

For any given hash code h, it is computationally infeasible

to find the input message m such that H(m) = h.

• Choose values of m′ at random and compute H(m′). Con-

tinue until a collision occurs, i.e., H(m′) = h.

• What is the level of effort required to perform the preimage

attack, i.e., to find the message m such that H(m) = h?

• For an n-bit hash code, the level of effort is proportional

to 2n.

Preimage Attack - A Brute-force Approach

For any given hash code h, it is computationally infeasible

to find the input message m such that H(m) = h.

• Choose values of m′ at random and compute H(m′). Con-

tinue until a collision occurs, i.e., H(m′) = h.

• What is the level of effort required to perform the preimage

attack, i.e., to find the message m such that H(m) = h?

• For an n-bit hash code, the level of effort is proportional

to 2n.

Preimage Attack - A Brute-force Approach

For any given hash code h, it is computationally infeasible

to find the input message m such that H(m) = h.

• Choose values of m′ at random and compute H(m′). Con-

tinue until a collision occurs, i.e., H(m′) = h.

• What is the level of effort required to perform the preimage

attack, i.e., to find the message m such that H(m) = h?

• For an n-bit hash code, the level of effort is proportional

to 2n.

Second Preimage Attack - A Brute-force Approach

For any given message m1, it is computationally infeasible

to find another message m2 such that m1 6= m2 and

H(m1) = H(m2).

• Choose values of m2 at random (m2 6= m1) and compute

H(m2). Continue until a collision occurs, i.e., H(m2) =

H(m1).

• What is the level of effort required to perform the second

preimage attack, i.e., to find another message m2 such that

m1 6= m2 and H(m1) = H(m2)?

• For an n-bit hash code, the level of effort is proportional

to 2n.

Second Preimage Attack - A Brute-force Approach

For any given message m1, it is computationally infeasible

to find another message m2 such that m1 6= m2 and

H(m1) = H(m2).

• Choose values of m2 at random (m2 6= m1) and compute

H(m2). Continue until a collision occurs, i.e., H(m2) =

H(m1).

• What is the level of effort required to perform the second

preimage attack, i.e., to find another message m2 such that

m1 6= m2 and H(m1) = H(m2)?

• For an n-bit hash code, the level of effort is proportional

to 2n.

Second Preimage Attack - A Brute-force Approach

For any given message m1, it is computationally infeasible

to find another message m2 such that m1 6= m2 and

H(m1) = H(m2).

• Choose values of m2 at random (m2 6= m1) and compute

H(m2). Continue until a collision occurs, i.e., H(m2) =

H(m1).

• What is the level of effort required to perform the second

preimage attack, i.e., to find another message m2 such that

m1 6= m2 and H(m1) = H(m2)?

• For an n-bit hash code, the level of effort is proportional

to 2n.

What should be the length of the hash code h to prevent the

preimage/second preimage attack?

Collision Resistant Attack - A Brute-force Approach

It is computationally infeasible to find a pair of messages

(m1,m2) such that m1 6= m2 and H(m1) = H(m2).

• What is the level of effort required to perform the collision

resistant attack, i.e., to find the pair of messages (m1,m2)

such that m1 6= m2 and H(m1) = H(m2)?

• The level of effort required is significantly less than the

effort required for a preimage/second preimage attack.

Why?

• Birthday Paradox!

• For an n-bit hash code, the level of effort is roughly pro-

portional to 2n/2.

Collision Resistant Attack - A Brute-force Approach

It is computationally infeasible to find a pair of messages

(m1,m2) such that m1 6= m2 and H(m1) = H(m2).

• What is the level of effort required to perform the collision

resistant attack, i.e., to find the pair of messages (m1,m2)

such that m1 6= m2 and H(m1) = H(m2)?

• The level of effort required is significantly less than the

effort required for a preimage/second preimage attack.

Why?

• Birthday Paradox!

• For an n-bit hash code, the level of effort is roughly pro-

portional to 2n/2.

Collision Resistant Attack - A Brute-force Approach

It is computationally infeasible to find a pair of messages

(m1,m2) such that m1 6= m2 and H(m1) = H(m2).

• What is the level of effort required to perform the collision

resistant attack, i.e., to find the pair of messages (m1,m2)

such that m1 6= m2 and H(m1) = H(m2)?

• The level of effort required is significantly less than the

effort required for a preimage/second preimage attack.

Why?

• Birthday Paradox!

• For an n-bit hash code, the level of effort is roughly pro-

portional to 2n/2.

Collision Resistant Attack - A Brute-force Approach

It is computationally infeasible to find a pair of messages

(m1,m2) such that m1 6= m2 and H(m1) = H(m2).

• What is the level of effort required to perform the collision

resistant attack, i.e., to find the pair of messages (m1,m2)

such that m1 6= m2 and H(m1) = H(m2)?

• The level of effort required is significantly less than the

effort required for a preimage/second preimage attack.

Why?

• Birthday Paradox!

• For an n-bit hash code, the level of effort is roughly pro-

portional to 2n/2.

What should be the length of the hash code h to prevent the

preimage/second preimage/collision-resistant attack?

Merkle-Damgȧrd Construction

• Most hash functions in use today follow the Merkle-

Damgȧrd structure.

• IV - Initial value

• mi - i-th input block

• CVi - Chaining variable

• CVl - Hash code

• l - Number of input blocks

• F - Compression function

Cryptographic Hash Functions - Examples

• Secure Hash Algorithm (SHA)-2 (Year: 2002) and SHA-3

(Year: 2015)

• SHA-224

• SHA-256

• SHA-384

• SHA-512

Cryptographic Hash Functions - Examples

• Secure Hash Algorithm (SHA)-2 (Year: 2002) and SHA-3

(Year: 2015)

• SHA-224

• SHA-256

• SHA-384

• SHA-512

Cryptographic Hash Functions - Examples

• Secure Hash Algorithm (SHA)-2 (Year: 2002) and SHA-3

(Year: 2015)

• SHA-224

• SHA-256

• SHA-384

• SHA-512

Cryptographic Hash Functions - Examples

• Secure Hash Algorithm (SHA)-2 (Year: 2002) and SHA-3

(Year: 2015)

• SHA-224

• SHA-256

• SHA-384

• SHA-512

Cryptographic Hash Functions - Examples

• Secure Hash Algorithm (SHA)-2 (Year: 2002) and SHA-3

(Year: 2015)

• SHA-224

• SHA-256

• SHA-384

• SHA-512

Public-key Cryptography

What are the applications of public-key cryptography?

Is it difficult to distribute a key/secret between communicating

parties?

Public-key (Asymmetric-keys) Cryptography

• Public-key cryptography - true revolution in cryptography

• Modern cryptography

• Symmetric-key algorithms (AES, DES, etc.)

• Permutation and substitution

• A secret key

• Public-key algorithms (RSA, ElGamal, etc.)

• Mathematical functions

• Two keys - one is public, the other is private/secret

Public-key (Asymmetric-keys) Cryptography

• Public-key cryptography - true revolution in cryptography

• Modern cryptography

• Symmetric-key algorithms (AES, DES, etc.)

• Permutation and substitution

• A secret key

• Public-key algorithms (RSA, ElGamal, etc.)

• Mathematical functions

• Two keys - one is public, the other is private/secret

Public-key (Asymmetric-keys) Cryptography

• Public-key cryptography - true revolution in cryptography

• Modern cryptography

• Symmetric-key algorithms (AES, DES, etc.)

• Permutation and substitution

• A secret key

• Public-key algorithms (RSA, ElGamal, etc.)

• Mathematical functions

• Two keys - one is public, the other is private/secret

Public-key (Asymmetric-keys) Cryptography

• Public-key cryptography - true revolution in cryptography

• Modern cryptography

• Symmetric-key algorithms (AES, DES, etc.)

• Permutation and substitution

• A secret key

• Public-key algorithms (RSA, ElGamal, etc.)

• Mathematical functions

• Two keys - one is public, the other is private/secret

Public-key (Asymmetric-keys) Cryptography

• Public-key cryptography - true revolution in cryptography

• Modern cryptography

• Symmetric-key algorithms (AES, DES, etc.)

• Permutation and substitution

• A secret key

• Public-key algorithms (RSA, ElGamal, etc.)

• Mathematical functions

• Two keys - one is public, the other is private/secret

Public-key (Asymmetric-keys) Cryptography

• Public-key cryptography - true revolution in cryptography

• Modern cryptography

• Symmetric-key algorithms (AES, DES, etc.)

• Permutation and substitution

• A secret key

• Public-key algorithms (RSA, ElGamal, etc.)

• Mathematical functions

• Two keys - one is public, the other is private/secret

Public-key (Asymmetric-keys) Cryptography

• Public-key cryptography - true revolution in cryptography

• Modern cryptography

• Symmetric-key algorithms (AES, DES, etc.)

• Permutation and substitution

• A secret key

• Public-key algorithms (RSA, ElGamal, etc.)

• Mathematical functions

• Two keys - one is public, the other is private/secret

Public-key (Asymmetric-keys) Cryptography

• Public-key cryptography - true revolution in cryptography

• Modern cryptography

• Symmetric-key algorithms (AES, DES, etc.)

• Permutation and substitution

• A secret key

• Public-key algorithms (RSA, ElGamal, etc.)

• Mathematical functions

• Two keys - one is public, the other is private/secret

Symmetric-key Cryptosystem - Encryption/Decryption

• m - Plaintext (Message)

• c - Ciphertext

• k - Secret-key shared between

Alice and Bob

Public-key Cryptography

• The need for public-key cryptosystems...

• Key distribution problems of symmetric-key cryptosystems

• Digital signatures

• History

• Diffie and Hellman - 1976

• R. Merkle - 1975 (did not publish until 1978)

• Bobby Inman (Director of the NSA) - Discovered at NSA

in the mid-1960s

Diffie and Hellman, New Directions in Cryptography, IEEE Transactions on Information

Theory, 6, (1976).

Public-key Cryptography

• The need for public-key cryptosystems...

• Key distribution problems of symmetric-key cryptosystems

• Digital signatures

• History

• Diffie and Hellman - 1976

• R. Merkle - 1975 (did not publish until 1978)

• Bobby Inman (Director of the NSA) - Discovered at NSA

in the mid-1960s

Diffie and Hellman, New Directions in Cryptography, IEEE Transactions on Information

Theory, 6, (1976).

Public-key Cryptography

• The need for public-key cryptosystems...

• Key distribution problems of symmetric-key cryptosystems

• Digital signatures

• History

• Diffie and Hellman - 1976

• R. Merkle - 1975 (did not publish until 1978)

• Bobby Inman (Director of the NSA) - Discovered at NSA

in the mid-1960s

Diffie and Hellman, New Directions in Cryptography, IEEE Transactions on Information

Theory, 6, (1976).

Public-key Cryptography

• The need for public-key cryptosystems...

• Key distribution problems of symmetric-key cryptosystems

• Digital signatures

• History

• Diffie and Hellman - 1976

• R. Merkle - 1975 (did not publish until 1978)

• Bobby Inman (Director of the NSA) - Discovered at NSA

in the mid-1960s

Diffie and Hellman, New Directions in Cryptography, IEEE Transactions on Information

Theory, 6, (1976).

Public-key Cryptography

• The need for public-key cryptosystems...

• Key distribution problems of symmetric-key cryptosystems

• Digital signatures

• History

• Diffie and Hellman - 1976

• R. Merkle - 1975 (did not publish until 1978)

• Bobby Inman (Director of the NSA) - Discovered at NSA

in the mid-1960s

Diffie and Hellman, New Directions in Cryptography, IEEE Transactions on Information

Theory, 6, (1976).

Public-key Cryptography

• The need for public-key cryptosystems...

• Key distribution problems of symmetric-key cryptosystems

• Digital signatures

• History

• Diffie and Hellman - 1976

• R. Merkle - 1975 (did not publish until 1978)

• Bobby Inman (Director of the NSA) - Discovered at NSA

in the mid-1960s

Diffie and Hellman, New Directions in Cryptography, IEEE Transactions on Information

Theory, 6, (1976).

Public-key Cryptography

• The need for public-key cryptosystems...

• Key distribution problems of symmetric-key cryptosystems

• Digital signatures

• History

• Diffie and Hellman - 1976

• R. Merkle - 1975 (did not publish until 1978)

• Bobby Inman (Director of the NSA) - Discovered at NSA

in the mid-1960s

Diffie and Hellman, New Directions in Cryptography, IEEE Transactions on Information

Theory, 6, (1976).

Public-key Cryptosystem - Encryption/Decryption

• m - Plaintext (Message)

• c - Ciphertext

• PUB - Bob’s public-key

• PRB - Bob’s private-key

Public-key Cryptosystem - Digital Signature

• m - Plaintext (Message)

• c - Ciphertext

• PUA - Alice’s public-key

• PRA - Alice’s private-key

Applications for Public-key Cryptosys-

tems

Applications for Public-key Cryptosystems

• Classification of public-key cryptosystems

• Encryption/decryption - Uses recipient’s public key to en-

crypt the message.

• Digital signature - Uses sender’s private key to sign the

message.

• Key exchange - Uses the private key(s) of sender and/or

recipient.

Applications for Public-key Cryptosystems

• Classification of public-key cryptosystems

• Encryption/decryption - Uses recipient’s public key to en-

crypt the message.

• Digital signature - Uses sender’s private key to sign the

message.

• Key exchange - Uses the private key(s) of sender and/or

recipient.

Applications for Public-key Cryptosystems

• Classification of public-key cryptosystems

• Encryption/decryption - Uses recipient’s public key to en-

crypt the message.

• Digital signature - Uses sender’s private key to sign the

message.

• Key exchange - Uses the private key(s) of sender and/or

recipient.

Applications for Public-key Cryptosystems

• Classification of public-key cryptosystems

• Encryption/decryption - Uses recipient’s public key to en-

crypt the message.

• Digital signature - Uses sender’s private key to sign the

message.

• Key exchange - Uses the private key(s) of sender and/or

recipient.

Requirements for Public-key Cryptosys-

tems

Requirements for Public-key Cryptosystems

• Key Generation (public/private keys) - should be feasible.

• Encryption - should be computationally feasible given the

message M and the public key PUk.

C = E(PUk,M)

• Decryption - should be computationally feasible given the

ciphertext C and the private key PRk.

M = D(PRk, C) = D[PRk, E(PUk,M)]

Requirements for Public-key Cryptosystems

• Key Generation (public/private keys) - should be feasible.

• Encryption - should be computationally feasible given the

message M and the public key PUk.

C = E(PUk,M)

• Decryption - should be computationally feasible given the

ciphertext C and the private key PRk.

M = D(PRk, C) = D[PRk, E(PUk,M)]

Requirements for Public-key Cryptosystems

• Key Generation (public/private keys) - should be feasible.

• Encryption - should be computationally feasible given the

message M and the public key PUk.

C = E(PUk,M)

• Decryption - should be computationally feasible given the

ciphertext C and the private key PRk.

M = D(PRk, C) = D[PRk, E(PUk,M)]

Requirements for Public-key Cryptosystems

• Given the public key PUk, it must be computationally in-

feasible to determine the private key, PRk.

• Given the public key PUk and a ciphertext C, it must be

computationally infeasible to recover the original message

M .

Requirements for Public-key Cryptosystems

• Given the public key PUk, it must be computationally in-

feasible to determine the private key, PRk.

• Given the public key PUk and a ciphertext C, it must be

computationally infeasible to recover the original message

M .

Is it difficult to design a public-key cryptosystem? If we have

to design a public-key cryptosystem, what do we need?

Trapdoor one-way function

• Trap-door one-way function - Easy to compute in one di-

rection and infeasible to compute in the other direction

without trapdoor information.

• Trapdoor one-way function

C = fk(M) easy, if k and M are known

M = f−1k (C) easy, if k and C are known

M = f−1k (C) infeasible, if C is known but k is unknown

Here, “easy” means possible in polynomial time.

Public-key Cryptosystems - Attacks

• Brute-force attack - Use large keys.

• How much large (keys)?

Large enough to make brute-

force attack impractical and small enough to keep the

encryption and decryption feasible.

• Find ways to compute the private key given the public key.

• Known/Chosen plaintext attacks to derive the private key.

Public-key Cryptosystems - Attacks

• Brute-force attack - Use large keys.

• How much large (keys)?

Large enough to make brute-

force attack impractical and small enough to keep the

encryption and decryption feasible.

• Find ways to compute the private key given the public key.

• Known/Chosen plaintext attacks to derive the private key.

Public-key Cryptosystems - Attacks

• Brute-force attack - Use large keys.

• How much large (keys)? Large enough to make brute-

force attack impractical and small enough to keep the

encryption and decryption feasible.

• Find ways to compute the private key given the public key.

• Known/Chosen plaintext attacks to derive the private key.

Public-key Cryptosystems - Attacks

• Brute-force attack - Use large keys.

• How much large (keys)? Large enough to make brute-

force attack impractical and small enough to keep the

encryption and decryption feasible.

• Find ways to compute the private key given the public key.

• Known/Chosen plaintext attacks to derive the private key.

Public-key Cryptosystems - Attacks

• Brute-force attack - Use large keys.

• How much large (keys)? Large enough to make brute-

force attack impractical and small enough to keep the

encryption and decryption feasible.

• Find ways to compute the private key given the public key.

• Known/Chosen plaintext attacks to derive the private key.

Digital Signature

What is a signature? Is it useful? How?

Goal: To generate a signature for digital data, e.g., sign a text

message or a video.

Goal: To generate a signature for digital data, e.g., sign a text

message or a video.

Is it difficult to sign digital data?

Digital Signature

• Masquerade - Insertion of messages into the network from

a fraudulent source (e.g., messages, acknowledgments).

• Content modification - Changes to the contents of a mes-

sage.

• Sequence modification - Modification of a sequence of mes-

sages communicated between parties.

• Timing modification - Delay or replay of messages.

• Source repudiation - Denial of transmission of message by

the source.

Digital Signature

• Masquerade - Insertion of messages into the network from

a fraudulent source (e.g., messages, acknowledgments).

• Content modification - Changes to the contents of a mes-

sage.

• Sequence modification - Modification of a sequence of mes-

sages communicated between parties.

• Timing modification - Delay or replay of messages.

• Source repudiation - Denial of transmission of message by

the source.

Digital Signature

• Masquerade - Insertion of messages into the network from

a fraudulent source (e.g., messages, acknowledgments).

• Content modification - Changes to the contents of a mes-

sage.

• Sequence modification - Modification of a sequence of mes-

sages communicated between parties.

• Timing modification - Delay or replay of messages.

• Source repudiation - Denial of transmission of message by

the source.

Digital Signature

• Masquerade - Insertion of messages into the network from

a fraudulent source (e.g., messages, acknowledgments).

• Content modification - Changes to the contents of a mes-

sage.

• Sequence modification - Modification of a sequence of mes-

sages communicated between parties.

• Timing modification - Delay or replay of messages.

• Source repudiation - Denial of transmission of message by

the source.

Digital Signature

• Masquerade - Insertion of messages into the network from

a fraudulent source (e.g., messages, acknowledgments).

• Content modification - Changes to the contents of a mes-

sage.

• Sequence modification - Modification of a sequence of mes-

sages communicated between parties.

• Timing modification - Delay or replay of messages.

• Source repudiation - Denial of transmission of message by

the source.

Digital Signature

• Masquerade - Insertion of messages into the network from

a fraudulent source (e.g., messages, acknowledgments).

• Content modification - Changes to the contents of a mes-

sage.

• Sequence modification - Modification of a sequence of mes-

sages communicated between parties.

• Timing modification - Delay or replay of messages.

• Source repudiation - Denial of transmission of message by

the source.

If two communicating parties do not trust each other, digital

signature enables them to communicate with each other

securely.

Digital Signature

Digital Signature - Algorithms

• Elgamal Digital Signature Scheme

• NIST Digital Signature Algorithm (DSA)

• Elliptic Curve Digital Signature Algorithm (ECDSA)

• Schnorr Digital Signature Scheme

• RSA-PSS Digital Signature Scheme

Number Theory

What is logarithm?

Logarithm

• The power to which a fixed number (base) must be raised

to produce a given number.

ax = b

x = loga b

Discrete Logarithm

ax = b (mod n)

x = loga b (mod n)

• If n is a composite number, discrete log is not always pos-

sible.

• If n is a prime number, and a is a generator of the group,

then discrete log exists.

Discrete Logarithm

ax = b (mod n)

x = loga b (mod n)

• If n is a composite number, discrete log is not always pos-

sible.

• If n is a prime number, and a is a generator of the group,

then discrete log exists.

Discrete Logarithm Problem (DLP)

• If p is a prime number, and g is a generator of F∗p. Let h

be an element of the finite field F∗p.

• The Discrete Logarithm Problem (DLP) is the problem of

finding an exponent x such that gx ≡ h (mod p)).

• The number x is called the discrete logarithm of h base g,

i.e., loggh.

Discrete Logarithm Problem (DLP)

• If p is a prime number, and g is a generator of F∗p. Let h

be an element of the finite field F∗p.

• The Discrete Logarithm Problem (DLP) is the problem of

finding an exponent x such that gx ≡ h (mod p)).

• The number x is called the discrete logarithm of h base g,

i.e., loggh.

Discrete Logarithm Problem (DLP)

• If p is a prime number, and g is a generator of F∗p. Let h

be an element of the finite field F∗p.

• The Discrete Logarithm Problem (DLP) is the problem of

finding an exponent x such that gx ≡ h (mod p)).

• The number x is called the discrete logarithm of h base g,

i.e., loggh.

Discrete Logarithm Problem (DLP)

• If p is a prime number, and g is a generator of F∗p. Let h

be an element of the finite field F∗p.

• The Discrete Logarithm Problem (DLP) is the problem of

finding an exponent x such that gx ≡ h (mod p)).

• The number x is called the discrete logarithm of h base g,

i.e., loggh.

Given g, x, and p, computing h = gx (mod p) is feasible.

Discrete Logarithm Problem (DLP)

• If p is a prime number, and g is a generator of F∗p. Let h

be an element of the finite field F∗p.

• The Discrete Logarithm Problem (DLP) is the problem of

finding an exponent x such that gx ≡ h (mod p)).

• The number x is called the discrete logarithm of h base g,

i.e., loggh.

Given g, x, and p, computing h = gx (mod p) is feasible.

Given g, h, and a sufficiently large p (e.g., 1024-bit),

finding the value of x is infeasible.

Discrete Logarithm Problem (DLP) - Example-1

Given g, x, and p, computing h = gx (mod p) is feasible.

• Let p = 11, g = 2, and x = 5, compute h.

Discrete Logarithm Problem (DLP) - Example-1

Given g, x, and p, computing h = gx (mod p) is feasible.

• Let p = 11, g = 2, and x = 5, compute h.

h = gx (mod p)

h = 25 (mod 11)

h = 10

Discrete Logarithm Problem (DLP) - Example-2

Given g, h, and a sufficiently large p (e.g., 1024-bit),

finding the value of x is infeasible.

h = gx (mod p)

• Let p = 11, g = 2, and h = 10, find x.

Discrete Logarithm Problem (DLP) - Example-2

Given g, h, and a sufficiently large p (e.g., 1024-bit),

finding the value of x is infeasible.

h = gx (mod p)

• Let p = 11, g = 2, and h = 10, find x.

10
?
= 21 (mod 11) - No

10
?
= 22 (mod 11) - No

10
?
= 23 (mod 11) - No

10
?
= 24 (mod 11) - No

10
?
= 25 (mod 11) - Yes

There is no efficient way but to try all possible combinations

until the answer is found. - A Discrete Logarithm Problem

Discrete Logarithm Problem (DLP) - Example-3

Given g, h, and a sufficiently large p (e.g., 1024-bit),

finding the value of x is infeasible.

h = gx (mod p)

• Let p = 131, g = 2, and h = 3, find x.

Elgamal Digital Signature Scheme

Elgamal Digital Signature Scheme

• Public parameters

• Primitive root (generator) α and a prime number p.

• Key generation

• Choose a random integer XA where 1 < XA < p− 1.

• Compute, YA = αXA mod p.

Elgamal Digital Signature Scheme

• Public parameters

• Primitive root (generator) α and a prime number p.

• Key generation

• Choose a random integer XA where 1 < XA < p− 1.

• Compute, YA = αXA mod p.

Elgamal Digital Signature Scheme

• Public parameters

• Primitive root (generator) α and a prime number p.

• Key generation

• Choose a random integer XA where 1 < XA < p− 1.

• Compute, YA = αXA mod p.

Elgamal Digital Signature Scheme

• Public parameters

• Primitive root (generator) α and a prime number p.

• Key generation

• Choose a random integer XA where 1 < XA < p− 1.

• Compute, YA = αXA mod p.

Elgamal Digital Signature Scheme

• Public parameters

• Primitive root (generator) α and a prime number p.

• Key generation

• Choose a random integer XA where 1 < XA < p− 1.

• Compute, YA = αXA mod p.

Elgamal Digital Signature Scheme

• Public parameters

• Primitive root (generator) α and a prime number p.

• Key generation

• Choose a random integer XA where 1 < XA < p− 1.

• Compute, YA = αXA mod p.

XA is a private-key, and YA is a public-key.

Elgamal Digital Signature Scheme

• Public parameters

• Primitive root (generator) α and a prime number p.

• Key generation

• Choose a random integer XA where 1 < XA < p− 1.

• Compute, YA = αXA mod p.

XA is a private-key, and YA is a public-key.

Is is feasible for an adversary to obtain the private key?

Elgamal Digital Signature Scheme

• Signature generation - To sign a message m where 0 ≤
m ≤ p− 1,

• Choose a random number r where 1 ≤ r ≤ p − 1, and

GCD(r, p− 1) = 1.

• Compute, S1 = αr mod p.

• Compute, S2 = r−1(m−XA · S1) mod (p− 1).

Elgamal Digital Signature Scheme

• Signature generation - To sign a message m where 0 ≤
m ≤ p− 1,

• Choose a random number r where 1 ≤ r ≤ p − 1, and

GCD(r, p− 1) = 1.

• Compute, S1 = αr mod p.

• Compute, S2 = r−1(m−XA · S1) mod (p− 1).

Elgamal Digital Signature Scheme

• Signature generation - To sign a message m where 0 ≤
m ≤ p− 1,

• Choose a random number r where 1 ≤ r ≤ p − 1, and

GCD(r, p− 1) = 1.

• Compute, S1 = αr mod p.

• Compute, S2 = r−1(m−XA · S1) mod (p− 1).

Elgamal Digital Signature Scheme

• Signature generation - To sign a message m where 0 ≤
m ≤ p− 1,

• Choose a random number r where 1 ≤ r ≤ p − 1, and

GCD(r, p− 1) = 1.

• Compute, S1 = αr mod p.

• Compute, S2 = r−1(m−XA · S1) mod (p− 1).

Elgamal Digital Signature Scheme

• Signature generation - To sign a message m where 0 ≤
m ≤ p− 1,

• Choose a random number r where 1 ≤ r ≤ p − 1, and

GCD(r, p− 1) = 1.

• Compute, S1 = αr mod p.

• Compute, S2 = r−1(m−XA · S1) mod (p− 1).

The signature consists of the pair (S1, S2).

Elgamal Digital Signature Scheme

• Signature verification

• Compute, V1 = αm mod p.

• Compute, V2 = (YA)
S1 · (S1)S2 mod (p).

Elgamal Digital Signature Scheme

• Signature verification

• Compute, V1 = αm mod p.

• Compute, V2 = (YA)
S1 · (S1)S2 mod (p).

Elgamal Digital Signature Scheme

• Signature verification

• Compute, V1 = αm mod p.

• Compute, V2 = (YA)
S1 · (S1)S2 mod (p).

Elgamal Digital Signature Scheme

• Signature verification

• Compute, V1 = αm mod p.

• Compute, V2 = (YA)
S1 · (S1)S2 mod (p).

If V1 = V2, the signature is valid.

References

References

• Arvind Narayanan, Edward Felten, Steven Goldfeder, Joseph Bon-

neau, Andrew Miller, Bitcoin and Cryptocurrency Technologies,

Princeton University Press, 2016.

• William Stallings, Cryptography and Network Security: Principles

and Practice, Prentice Hall, 2017.

Thank You.

	Introduction
	Cryptographic Hash Functions
	Public-key Cryptography
	Digital Signature
	References

