Cryptographic Primitives in Blockchain

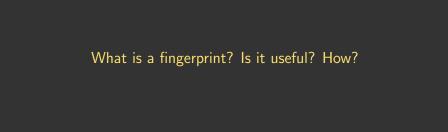
Dr. Keyur Parmar

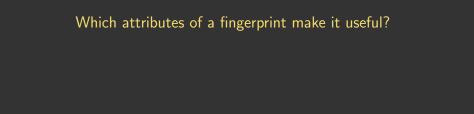
Indian Institute of Information Technology, Vadodara

Outline

- 1. Introduction
- 2. Cryptographic Hash Functions
- 3. Public-key Cryptography
- 4. Digital Signature
- 5. References

Introduction





۷	hich attributes of a fingerprint make it useful?
	Uniqueness (i.e., unique to each person)

Which attributes of a fingerprint make it useful?

- Uniqueness (i.e., unique to each person)
- Persistence (i.e., does not change over time)

Which attributes of a fingerprint make it useful?

- Uniqueness (i.e., unique to each person)
- Persistence (i.e., does not change over time)
- Size (i.e., very small as compared to the person)

Goal: To generate fingerprints for digital data, e.g., a fingerprint for a text message or a video.

Goal: To generate fingerprints for digital data, e.g., a fingerprint for a text message or a video.

Is it difficult to generate a fingerprint for digital data?

What is a cryptographic hash function?

• Input:

- Input:
 - ullet A variable-length data block M

- Input:
 - ullet A variable-length data block M
- Output:

- Input:
 - ullet A variable-length data block M
- Output:
 - A fixed-size hash code h = H(M)

• Input (Text):

$\label{lem:cryptographic} \mbox{Cryptographic Hash Function - SHA256 - Example-1}$

- Input (Text):
 - Keyur

- Input (Text):
 - Keyur
- Output (Hexadecimal):

- Input (Text):
 - Keyur
- Output (Hexadecimal):
 - ABDCF0E8 41704B32 BFA2B901 F44CD8B4 A99DD384 D63A044F 552BF2AC EA0C46D3

- Input (Text):
 - Keyur
- Output (Hexadecimal):
 - ABDCF0E8 41704B32 BFA2B901 F44CD8B4 A99DD384 D63A044F 552BF2AC EA0C46D3
- Output (Binary):

- Input (Text):
 - Keyur
- Output (Hexadecimal):
 - ABDCF0E8 41704B32 BFA2B901 F44CD8B4 A99DD384
 D63A044F 552BF2AC EA0C46D3
- Output (Binary):

• Input:

- Input:
 - Ubuntu DVD (1.9 GB): ubuntu-18.04.2-desktop-amd64.iso

- Input:
 - Ubuntu DVD (1.9 GB): ubuntu-18.04.2-desktopamd64.iso
- Output (Hexadecimal):

- Input:
 - Ubuntu DVD (1.9 GB): ubuntu-18.04.2-desktop-amd64.iso
- Output (Hexadecimal):
 - 22580B9F 3B186CC6 6818E60F 44C46F79 5D708A1A D86B9225 C458413B 638459C4

- Input:
 - Ubuntu DVD (1.9 GB): ubuntu-18.04.2-desktop-amd64.iso
- Output (Hexadecimal):
 - 22580B9F 3B186CC6 6818E60F 44C46F79 5D708A1A D86B9225 C458413B 638459C4
- Output (Binary):

- Input:
 - Ubuntu DVD (1.9 GB): ubuntu-18.04.2-desktop-amd64.iso
- Output (Hexadecimal):
 - 22580B9F 3B186CC6 6818E60F 44C46F79 5D708A1A D86B9225 C458413B 638459C4
- Output (Binary):

Applications of Cryptographic Hash

Functions

$\label{lem:constraints} \mbox{Applications of Cryptographic Hash Functions}$

Message authentication

- Message authentication
- Digital signature

- Message authentication
- Digital signature
- One-way password file (e.g., /etc/shadow)

- Message authentication
- Digital signature
- One-way password file (e.g., /etc/shadow)
- Pseudo-random number generator (PRNG)

- Message authentication
- Digital signature
- One-way password file (e.g., /etc/shadow)
- Pseudo-random number generator (PRNG)
- Blockchain

Requirements for a Cryptographic Hash

Functions

1. Variable input size

- 1. Variable input size
- 2. Fixed output size

- 1. Variable input size
- 2. Fixed output size
- 3. Efficiency

- 1. Variable input size
- 2. Fixed output size
- 3. Efficiency
- 4. One-way property (Preimage resistant)

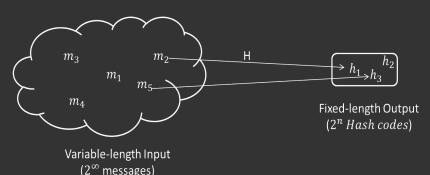
- 1. Variable input size
- 2. Fixed output size
- 3. Efficiency
- 4. One-way property (Preimage resistant)
- 5. Second preimage resistant (Weak collision resistant)

- 1. Variable input size
- 2. Fixed output size
- 3. Efficiency
- 4. One-way property (Preimage resistant)
- 5. Second preimage resistant (Weak collision resistant)
- 6. Collision resistant (Strong collision resistant)

• Preimage - For a hash code h=H(m), m is the preimage of h.

- Preimage For a hash code h = H(m), m is the preimage of h.
- As there is a many-to-one mapping, for any given hash code h, there will be multiple preimages.

- Preimage For a hash code h = H(m), m is the preimage of h.
- As there is a many-to-one mapping, for any given hash code h, there will be multiple preimages.



• Let's assume that the length of the hash code is n bits, and the hash function H takes as input messages of length b bits with b>n.

- Let's assume that the length of the hash code is n bits, and the hash function H takes as input messages of length b bits with b > n.
- The total number of possible hash codes is 2^n , the total number of possible messages is 2^b .

- Let's assume that the length of the hash code is n bits, and the hash function H takes as input messages of length b bits with b > n.
- The total number of possible hash codes is 2^n , the total number of possible messages is 2^b .
- ullet On average, each hash code corresponds to 2^{b-n} preimages.

- Let's assume that the length of the hash code is n bits, and the hash function H takes as input messages of length b bits with b > n.
- The total number of possible hash codes is 2^n , the total number of possible messages is 2^b .
- ullet On average, each hash code corresponds to 2^{b-n} preimages.
- If the input is arbitrarily large, then the number of preimages per hash code is arbitrarily large. Hence, there will be collisions.

- Let's assume that the length of the hash code is n bits, and the hash function H takes as input messages of length b bits with b > n.
- The total number of possible hash codes is 2^n , the total number of possible messages is 2^b .
- ullet On average, each hash code corresponds to 2^{b-n} preimages.
- If the input is arbitrarily large, then the number of preimages per hash code is arbitrarily large. Hence, there will be collisions.
- Is it possible to design a collision resistant hash function?

One-way Property (Preimage Resistant)

For any given hash code h, it is computationally infeasible to find the input message m such that H(m)=h.

Second Preimage Resistant (Weak Collision Resistant)

For any given message m_1 , it is computationally infeasible to find another message m_2 such that $m_1 \neq m_2$ and $H(m_1) = H(m_2)$.

Collision Resistant (Strong Collision Resistant)

Security Attacks

- Two categories of attacks on hash functions.
 - Brute-force attacks depend only on the bit length. (e.g., bit length of the hash code)
 - Cryptanalysis depends on design flaw(s) of a particular hash function.

 Given the following entry of the "/etc/shadow" file (of Ubuntu 16.04), find the password of the user, "Alice" which contains [A-Za-z1-9] (Uppercase and/or lowercase letters and/or numbers).

Alice:\$6\$YIjqPaC8\$ckYvhWkRkymmv/twBcANwa/L WNjLsAdCHRToK3G9GIImPUWERnmFW2bUoOmLH zUJ2tGr433QaOnHLdjDjc4Bs/:17648:0:99999:7:::

 Which property of the hash function you have to attack to find the password of Alice? Why? Preimage Attack - A Brute-force Approach

For any given hash code h, it is computationally infeasible to find the input message m such that H(m) = h.

• Choose values of m' at random and compute H(m'). Continue until a collision occurs, i.e., H(m') = h.

For any given hash code h, it is computationally infeasible to find the input message m such that H(m)=h.

- Choose values of m' at random and compute H(m'). Continue until a collision occurs, i.e., H(m') = h.
- What is the level of effort required to perform the preimage attack, i.e., to find the message m such that H(m)=h?

For any given hash code h, it is computationally infeasible to find the input message m such that H(m)=h.

- Choose values of m' at random and compute H(m'). Continue until a collision occurs, i.e., H(m') = h.
- What is the level of effort required to perform the preimage attack, i.e., to find the message m such that H(m) = h?
- For an n-bit hash code, the level of effort is proportional to 2^n .

Second Preimage Attack - A Brute-force Approach

For any given message m_1 , it is computationally infeasible to find another message m_2 such that $m_1 \neq m_2$ and $H(m_1) = H(m_2)$.

• Choose values of m_2 at random $(m_2 \neq m_1)$ and compute $H(m_2)$. Continue until a collision occurs, i.e., $H(m_2) = H(m_1)$.

For any given message m_1 , it is computationally infeasible to find another message m_2 such that $m_1 \neq m_2$ and $H(m_1) = H(m_2)$.

- Choose values of m_2 at random $(m_2 \neq m_1)$ and compute $H(m_2)$. Continue until a collision occurs, i.e., $H(m_2) = H(m_1)$.
- What is the level of effort required to perform the second preimage attack, i.e., to find another message m_2 such that $m_1 \neq m_2$ and $H(m_1) = H(m_2)$?

For any given message m_1 , it is computationally infeasible to find another message m_2 such that $m_1 \neq m_2$ and $H(m_1) = H(m_2)$.

- Choose values of m_2 at random $(m_2 \neq m_1)$ and compute $H(m_2)$. Continue until a collision occurs, i.e., $H(m_2) = H(m_1)$.
- What is the level of effort required to perform the second preimage attack, i.e., to find another message m_2 such that $m_1 \neq m_2$ and $H(m_1) = H(m_2)$?
- For an n-bit hash code, the level of effort is proportional to 2^n .

What should be the length of the hash code h to prevent the preimage/second preimage attack?

Collision Resistant Attack - A Brute-force Approach

It is computationally infeasible to find a pair of messages (m_1, m_2) such that $m_1 \neq m_2$ and $H(m_1) = H(m_2)$.

• What is the level of effort required to perform the collision resistant attack, i.e., to find the pair of messages (m_1, m_2) such that $m_1 \neq m_2$ and $H(m_1) = H(m_2)$?

- What is the level of effort required to perform the collision resistant attack, i.e., to find the pair of messages (m_1, m_2) such that $m_1 \neq m_2$ and $H(m_1) = H(m_2)$?
- The level of effort required is significantly less than the effort required for a preimage/second preimage attack.
 Why?

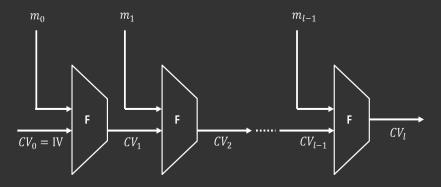
- What is the level of effort required to perform the collision resistant attack, i.e., to find the pair of messages (m_1, m_2) such that $m_1 \neq m_2$ and $H(m_1) = H(m_2)$?
- The level of effort required is significantly less than the effort required for a preimage/second preimage attack.
 Why?
 - Birthday Paradox!

- What is the level of effort required to perform the collision resistant attack, i.e., to find the pair of messages (m_1, m_2) such that $m_1 \neq m_2$ and $H(m_1) = H(m_2)$?
- The level of effort required is significantly less than the effort required for a preimage/second preimage attack.
 Why?
 - Birthday Paradox!
- For an n-bit hash code, the level of effort is **roughly** proportional to $2^{n/2}$.

What should be the length of the hash code h to prevent the preimage/second preimage/collision-resistant attack?

Merkle-Damgard Construction

 Most hash functions in use today follow the Merkle-Damgård structure.



- IV Initial value
- ullet m_i i-th input block
- \bullet CV_i Chaining variable

- ullet CV_l Hash code
- *l* Number of input blocks
- *F* Compression function

• Secure Hash Algorithm (SHA)-2 (Year: 2002) and SHA-3 (Year: 2015)

- Secure Hash Algorithm (SHA)-2 (Year: 2002) and SHA-3 (Year: 2015)
 - SHA-224

- Secure Hash Algorithm (SHA)-2 (Year: 2002) and SHA-3 (Year: 2015)
 - SHA-224
 - SHA-256

- Secure Hash Algorithm (SHA)-2 (Year: 2002) and SHA-3 (Year: 2015)
 - SHA-224
 - SHA-256
 - SHA-384

Cryptographic Hash Functions - Examples

- Secure Hash Algorithm (SHA)-2 (Year: 2002) and SHA-3 (Year: 2015)
 - SHA-224
 - SHA-256
 - SHA-384
 - SHA-512

Is it difficult to distribute a	key/secret betwee parties?	en communicating

Public-key cryptography - true revolution in cryptography

- Public-key cryptography true revolution in cryptography
- Modern cryptography

- Public-key cryptography true revolution in cryptography
- Modern cryptography
 - Symmetric-key algorithms (AES, DES, etc.)

- Public-key cryptography true revolution in cryptography
- Modern cryptography
 - Symmetric-key algorithms (AES, DES, etc.)
 - Permutation and substitution

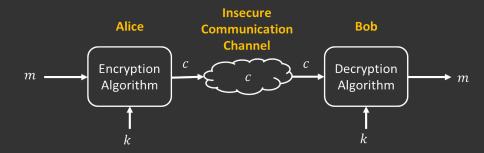
- Public-key cryptography true revolution in cryptography
- Modern cryptography
 - Symmetric-key algorithms (AES, DES, etc.)
 - Permutation and substitution
 - A secret key

- Public-key cryptography true revolution in cryptography
- Modern cryptography
 - Symmetric-key algorithms (AES, DES, etc.)
 - Permutation and substitution
 - A secret key
 - Public-key algorithms (RSA, ElGamal, etc.)

- Public-key cryptography true revolution in cryptography
- Modern cryptography
 - Symmetric-key algorithms (AES, DES, etc.)
 - Permutation and substitution
 - A secret key
 - Public-key algorithms (RSA, ElGamal, etc.)
 - Mathematical functions

- Public-key cryptography true revolution in cryptography
- Modern cryptography
 - Symmetric-key algorithms (AES, DES, etc.)
 - Permutation and substitution
 - A secret key
 - Public-key algorithms (RSA, ElGamal, etc.)
 - Mathematical functions
 - Two keys one is public, the other is private/secret

Symmetric-key Cryptosystem - Encryption/Decryption



- *m* Plaintext (Message)
- *c* Ciphertext

 k - Secret-key shared between Alice and Bob

• The need for public-key cryptosystems...

- The need for public-key cryptosystems...
 - Key distribution problems of symmetric-key cryptosystems

- The need for public-key cryptosystems...
 - Key distribution problems of symmetric-key cryptosystems
 - Digital signatures

- The need for public-key cryptosystems...
 - Key distribution problems of symmetric-key cryptosystems
 - Digital signatures
- History

- The need for public-key cryptosystems...
 - Key distribution problems of symmetric-key cryptosystems
 - Digital signatures
- History
 - Diffie and Hellman 1976

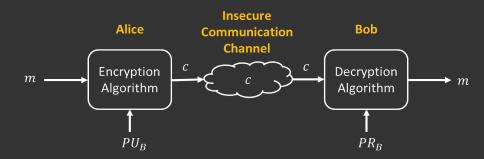
- The need for public-key cryptosystems...
 - Key distribution problems of symmetric-key cryptosystems
 - Digital signatures
- History
 - Diffie and Hellman 1976
 - R. Merkle 1975 (did not publish until 1978)

Diffie and Hellman, New Directions in Cryptography, IEEE Transactions on Information Theory, 6, (1976).

- The need for public-key cryptosystems...
 - Key distribution problems of symmetric-key cryptosystems
 - Digital signatures
- History
 - Diffie and Hellman 1976
 - R. Merkle 1975 (did not publish until 1978)
 - Bobby Inman (Director of the NSA) Discovered at NSA in the mid-1960s

Diffie and Hellman, New Directions in Cryptography, IEEE Transactions on Information Theory, 6, (1976).

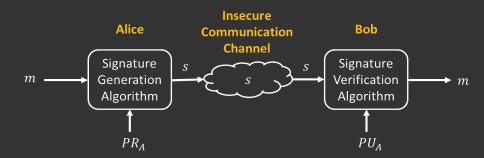
Public-key Cryptosystem - Encryption/Decryption



- *m* Plaintext (Message)
- *c* Ciphertext

- ullet PU_B Bob's public-key
- ullet PR_B Bob's private-key

Public-key Cryptosystem - Digital Signature



- m Plaintext (Message)
- *c* Ciphertext

- PU_A Alice's public-key
- PR_A Alice's private-key

tems

• Classification of public-key cryptosystems

- Classification of public-key cryptosystems
 - Encryption/decryption Uses recipient's public key to encrypt the message.

- Classification of public-key cryptosystems
 - Encryption/decryption Uses recipient's public key to encrypt the message.
 - Digital signature Uses sender's private key to sign the message.

- Classification of public-key cryptosystems
 - Encryption/decryption Uses recipient's public key to encrypt the message.
 - Digital signature Uses sender's private key to sign the message.
 - Key exchange Uses the private key(s) of sender and/or recipient.

tems

• Key Generation (public/private keys) - should be feasible.

- Key Generation (public/private keys) should be feasible.
- Encryption should be computationally feasible given the message M and the public key PU_k .

$$C = E(PU_k, M)$$

- Key Generation (public/private keys) should be feasible.
- Encryption should be computationally feasible given the message M and the public key PU_k .

$$C = E(PU_k, M)$$

• Decryption - should be computationally feasible given the ciphertext C and the private key PR_k .

$$M = D(PR_k, C) = D[PR_k, E(PU_k, M)]$$

• Given the public key PU_k , it must be computationally infeasible to determine the private key, PR_k .

- Given the public key PU_k , it must be computationally infeasible to determine the private key, PR_k .
- Given the public key PU_k and a ciphertext C, it must be computationally infeasible to recover the original message M.

Is it difficult to design a public-key cryptosystem? If we have to design a public-key cryptosystem, what do we need?

Trapdoor one-way function

- Trap-door one-way function Easy to compute in one direction and infeasible to compute in the other direction without trapdoor information.
- Trapdoor one-way function

$$C=f_k(M)$$
 easy, if k and M are known
$$M=f_k^{-1}(C) \quad \text{easy, if k and C are known}$$
 $M=f_k^{-1}(C) \quad \text{infeasible, if C is known but k is unknown}$

Here, "easy" means possible in polynomial time.

Public-key Cryptosystems - Attacks

• Brute-force attack - Use large keys.

- Brute-force attack Use large keys.
 - How much large (keys)?

- Brute-force attack Use large keys.
 - How much large (keys)? Large enough to make bruteforce attack impractical and small enough to keep the encryption and decryption feasible.

- Brute-force attack Use large keys.
 - How much large (keys)? Large enough to make bruteforce attack impractical and small enough to keep the encryption and decryption feasible.
- Find ways to compute the private key given the public key.

- Brute-force attack Use large keys.
 - How much large (keys)? Large enough to make bruteforce attack impractical and small enough to keep the encryption and decryption feasible.
- Find ways to compute the private key given the public key.
- Known/Chosen plaintext attacks to derive the private key.

What is a signature? Is it useful? How?

Goal: To generate a signature for digital data, e.g., sign a text message or a video.

Goal: To generate a signature for digital data, e.g., sign a text message or a video.

Is it difficult to sign digital data?

• Masquerade - Insertion of messages into the network from a fraudulent source (e.g., messages, acknowledgments).

- Masquerade Insertion of messages into the network from a fraudulent source (e.g., messages, acknowledgments).
- Content modification Changes to the contents of a message.

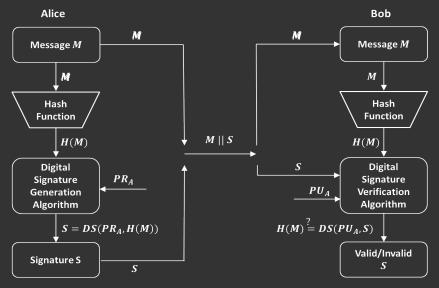
- Masquerade Insertion of messages into the network from a fraudulent source (e.g., messages, acknowledgments).
- Content modification Changes to the contents of a message.
- Sequence modification Modification of a sequence of messages communicated between parties.

- Masquerade Insertion of messages into the network from a fraudulent source (e.g., messages, acknowledgments).
- Content modification Changes to the contents of a message.
- Sequence modification Modification of a sequence of messages communicated between parties.
- Timing modification Delay or replay of messages.

- Masquerade Insertion of messages into the network from a fraudulent source (e.g., messages, acknowledgments).
- Content modification Changes to the contents of a message.
- Sequence modification Modification of a sequence of messages communicated between parties.
- Timing modification Delay or replay of messages.
- Source repudiation Denial of transmission of message by the source.

- Masquerade Insertion of messages into the network from a fraudulent source (e.g., messages, acknowledgments).
- Content modification Changes to the contents of a message.
- Sequence modification Modification of a sequence of messages communicated between parties.
- Timing modification Delay or replay of messages.
- Source repudiation Denial of transmission of message by the source.

If two communicating parties do not trust each other, digital signature enables them to communicate with each other securely.



 ${\it PR}_{\it A}$ - Alice's Private Key ${\it PU}_{\it A}$ - Alice's Public Key

Digital Signature - Algorithms

- Elgamal Digital Signature Scheme
- NIST Digital Signature Algorithm (DSA)
- Elliptic Curve Digital Signature Algorithm (ECDSA)
- Schnorr Digital Signature Scheme
- RSA-PSS Digital Signature Scheme

Number Theory

Logarithm

 The power to which a fixed number (base) must be raised to produce a given number.

$$a^x = b$$
$$x = \log_a b$$

Discrete Logarithm

$$a^x = b \pmod{n}$$
$$x = \log_a b \pmod{n}$$

If n is a composite number, discrete log is not always possible.

Discrete Logarithm

$$a^x = b \pmod{n}$$
$$x = \log_a b \pmod{n}$$

- If n is a composite number, discrete log is not always possible.
- If n is a prime number, and a is a generator of the group, then discrete log exists.

• If p is a prime number, and g is a generator of \mathbb{F}_p^* . Let h be an element of the finite field \mathbb{F}_p^* .

- If p is a prime number, and g is a generator of \mathbb{F}_p^* . Let h be an element of the finite field \mathbb{F}_p^* .
- The Discrete Logarithm Problem (DLP) is the problem of finding an exponent x such that $g^x \equiv h \pmod{p}$.

- If p is a prime number, and g is a generator of \mathbb{F}_p^* . Let h be an element of the finite field \mathbb{F}_p^* .
- The Discrete Logarithm Problem (DLP) is the problem of finding an exponent x such that $g^x \equiv h \pmod{\mathfrak{p}}$.
- The number x is called the discrete logarithm of h base g,
 i.e., log_qh.

- If p is a prime number, and g is a generator of \mathbb{F}_p^* . Let h be an element of the finite field \mathbb{F}_p^* .
- The Discrete Logarithm Problem (DLP) is the problem of finding an exponent x such that $g^x \equiv h \pmod{p}$.
- The number x is called the discrete logarithm of h base g, i.e., log_ah.

Given g, x, and p, computing $h=g^x \pmod{\mathfrak{p}}$ is feasible.

- If p is a prime number, and g is a generator of \mathbb{F}_p^* . Let h be an element of the finite field \mathbb{F}_p^* .
- The Discrete Logarithm Problem (DLP) is the problem of finding an exponent x such that $g^x \equiv h \pmod{p}$.
- The number x is called the discrete logarithm of h base g, i.e., log_qh.

Given g, x, and p, computing $h = g^x \pmod{p}$ is feasible.

Given g, h, and a sufficiently large p (e.g., 1024-bit), finding the value of x is infeasible.

Given g, x, and p, computing $h = g^x \pmod{p}$ is feasible.

• Let p = 11, g = 2, and x = 5, compute h.

Given g, x, and p, computing $h=g^x \pmod{\mathfrak{p}}$ is feasible.

• Let p = 11, g = 2, and x = 5, compute h.

$$h=g^x \ ({\sf mod} \ {\sf p})$$
 $h=2^5 \ ({\sf mod} \ 11)$ $h=10$

Given g, h, and a sufficiently large p (e.g., 1024-bit), finding the value of x is infeasible.

$$h = g^x \; (\mathsf{mod} \; \mathsf{p})$$

• Let p = 11, g = 2, and h = 10, find x.

Given g, h, and a sufficiently large p (e.g., 1024-bit), finding the value of x is infeasible. $h = a^x \pmod{p}$

$$h = g^x \; (\mathsf{mod} \; \mathsf{p})$$

• Let p = 11, g = 2, and h = 10, find x.

$$\begin{array}{c} 10 \stackrel{?}{=} 2^1 \text{ (mod 11) - No} \\ 10 \stackrel{?}{=} 2^2 \text{ (mod 11) - No} \\ 10 \stackrel{?}{=} 2^3 \text{ (mod 11) - No} \\ 10 \stackrel{?}{=} 2^4 \text{ (mod 11) - No} \\ 10 \stackrel{?}{=} 2^5 \text{ (mod 11) - Yes} \end{array}$$

There is no efficient way but to try all possible combinations until the answer is found. - A Discrete Logarithm Problem

Given g, h, and a sufficiently large p (e.g., 1024-bit), finding the value of x is infeasible. $h = q^x \pmod{p}$

$$n=g^{\omega}$$
 (mod p

• Let p = 131, g = 2, and h = 3, find x.

Public parameters

- Public parameters
 - Primitive root (generator) α and a prime number p.

- Public parameters
 - Primitive root (generator) α and a prime number p.
- Key generation

- Public parameters
 - Primitive root (generator) α and a prime number p.
- Key generation
 - Choose a random integer X_A where $1 < X_A < p 1$.

- Public parameters
 - Primitive root (generator) α and a prime number p.
- Key generation
 - Choose a random integer X_A where $1 < X_A < p 1$.
 - Compute, $Y_A = \alpha^{X_A} \mod p$.

- Public parameters
 - Primitive root (generator) α and a prime number p.
- Key generation
 - Choose a random integer X_A where $1 < X_A < p 1$.
 - Compute, $Y_A = \alpha^{X_A} \mod p$.

 X_A is a private-key, and Y_A is a public-key.

- Public parameters
 - Primitive root (generator) α and a prime number p.
- Key generation
 - Choose a random integer X_A where $1 < X_A < p 1$.
 - Compute, $Y_A = \alpha^{X_A} \mod p$.

 X_A is a private-key, and Y_A is a public-key.

Is is feasible for an adversary to obtain the private key?

• Signature generation - To sign a message m where $0 \le m \le p-1$,

- • Signature generation - To sign a message m where $0 \leq m \leq p-1$,
 - Choose a random number r where $1 \le r \le p-1$, and GCD(r,p-1)=1.

- \bullet Signature generation To sign a message m where $0 \leq m \leq p-1$,
 - \bullet Choose a random number r where $1 \leq r \leq p-1,$ and GCD(r,p-1)=1.
 - Compute, $S_1 = \alpha^r \mod p$.

- • Signature generation - To sign a message m where $0 \le m \le p-1$,
 - \bullet Choose a random number r where $1 \leq r \leq p-1$, and GCD(r,p-1)=1.
 - Compute, $S_1 = \alpha^r \mod p$.
 - Compute, $S_2 = r^{-1}(m X_A \cdot S_1) \mod (p-1)$.

- Signature generation To sign a message m where $0 \le m \le p-1$,
 - Choose a random number r where $1 \le r \le p-1$, and GCD(r,p-1)=1.
 - Compute, $S_1 = \alpha^r \mod p$.
 - Compute, $S_2 = r^{-1}(m X_A \cdot S_1) \mod (p-1)$.

The signature consists of the pair (S_1, S_2) .

• Signature verification

- Signature verification
 - Compute, $V_1 = \alpha^m \mod p$.

- Signature verification
 - Compute, $V_1 = \alpha^m \mod p$.
 - Compute, $V_2 = (Y_A)^{S_1} \cdot (S_1)^{S_2} \mod (p)$.

- Signature verification
 - Compute, $V_1 = \alpha^m \mod p$.
 - Compute, $V_2 = (Y_A)^{S_1} \cdot (S_1)^{S_2} \mod (p)$.

If $V_1 = V_2$, the signature is valid.

References

References

- Arvind Narayanan, Edward Felten, Steven Goldfeder, Joseph Bonneau, Andrew Miller, Bitcoin and Cryptocurrency Technologies, Princeton University Press, 2016.
- William Stallings, Cryptography and Network Security: Principles and Practice, Prentice Hall, 2017.

Thank You.